A Novel Synthesis of Quinazolines by Cyclization of 1-(2-Isocyanophenyl)alkylideneamines Generated by the Treatment of 2-(1-Azidoalkyl)phenyl Isocyanides with NaH

by Kosuke Ezaki and Kazuhiro Kobayashi*

Division of Applied Chemistry, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 68-8552, Japan (phone/fax: +81-857-315263; e-mail: kkoba@chem.tottori-u.ac.jp)

A new and efficient method for the synthesis of quinazolines has been developed. Thus, N-[2-(1-azidoalkyl)phenyl]formamides **1** are dehydrated with POCl₃ to give the corresponding 2-(1-azidoalkyl)phenyl isocyanides **2**, which are then treated with NaH in DMF at 0° to give quinazolines **6** in satisfactory yields *via* cyclization of 1-(2-isocyanophenyl)alkylideneamine intermediates **4**. This methodology can be applied to the synthesis of the 7-azaanalogs of quinazolines, *i.e.*, pyrido[3,4-*d*]pyrimidines **9**.

Introduction. - Quinazolines are undoubtedly one of the most important classes of heterocycles, and they recently attract much attention, because a number of compounds with the quinazoline skeleton exhibit a variety of biological activities [1]. Quinazoline is a rather expensive chemical, and its new preparation by the reaction of benzene-1,2-dicarboxamide with iodobenzene diacetate as a key step has been reported [2]. Moreover, several new methods for the general preparation of quinazoline derivatives have recently been described [3][4]. For example, Wang and co-workers have reported a synthesis of 4-substituted quinazolines by the N-iodosuccinimide (NIS)-catalyzed reaction of 2-aminophenyl ketones with AcNMe2 and NH3 in the presence of excess t-BuOOH at 120° [3]. So, we became interested in pursuing a novel and convenient procedure for the preparation of quinazoline and its derivatives. We envisaged that the generation of 1-(2-isocyanophenyl)alkylideneamine would lead to the formation of quinazolines. In the course of our investigations, it was found that the reaction of 2-(1-azidoalkyl)phenyl isocyanides 2, easily derived from N-[2-(1azidoalkyl)phenyl]formamides 1, with NaH could fulfill our expectations. We report herein the results of our study, which provided an efficient route to quinazolines. We have found that the present method is also applicable to the synthesis of the 7azaanalogs of quinazolines, pyrido [3,4-d] pyrimidines 9, which are of biological interest as well [5].

Results and Discussion. – The synthesis of quinazolines **6** from azido formamides **1** could be achieved as outlined in *Scheme 1*. Compounds **1** were easily accessible: N-[2-(azidomethyl)phenyl]formamide (**1a**) [6] is a known compound, and N-[2-(azidomethyl)-5-chlorophenyl]formamide (**1e**) was prepared from N-[3-chloro-6-(chloromethyl)phenyl]formamide [7] under the conditions for the preparation of **1a**. The other azido formamides **1** were prepared from the respective 2-aminophenyl ketones by easy

© 2014 Verlag Helvetica Chimica Acta AG, Zürich

four-step sequences. Thus, these ketones were *N*-formylated with HCO_2H , and subsequent reduction with NaBH₄ afforded the corresponding *N*-[2-(1-hydroxyalkyl)-phenyl]formamides. The latter were treated with $SOCl_2$, and the resulting chloro formamides were converted to **1** on treatment with NaN₃ (see *Exper. Part*).

The azido formamides **1**, thus obtained, were dehydrated with POCl₃ in the presence of Et₃N in THF at 0° to give the corresponding 2-(azidoethyl)phenyl isocyanides **2** in relatively good yields (*Table*; see [6]). When compounds **2** were treated with 1 equiv. of NaH in DMF at 0°, smooth deprotonation of the benzyl group, giving the benzyl anion intermediate **3**, denitrogenation, and subsequent intramolecular cyclization of the resulting alkylideneamine intermediate **3** by the attack of the anion on the isocyano C-atom took place within 10 min. Aqueous workup, followed by purification (recrystallization or column chromatography on SiO₂) gave the desired quinazolines **6** in generally good yields as compiled in the *Table* as well. However, the yield of product **6b** was much lower than those of the others (*Entry 2*). We speculate that this poor yield may be attributed to the lower acidity of the benzyl proton of the respective precursor **2b** due to its Me substituent.

Solvents other than DMF were also studied. In THF and 1,2-dimethoxyethane (DME), the reactions proceeded much slower than those in DMF. However, if the reactions were allowed to proceed long enough (overnight and *ca.* 5 h, resp.) at room

Entry	1	2	Yield ^a)	6	Yield ^a)
1	$1a(R^1=R^2=R^3=H)$	2a [6]	86	6a	69
2	1b $(R^1 = R^2 = H, R^3 = Me)$	2b	74	6b	34
3	1c $(R^1 = R^2 = H, R^3 = Ph)$	2c	79	6c	88
4	1d $(R^1 = R^2 = H, R^3 = 4 - Cl - C_6H_4)$	2d	76	6d	87
5	1e $(R^1 = H, R^2 = Cl, R^3 = H)$	2e	75	6e	63
6	1f ($\mathbf{R}^1 = \mathbf{H}, \mathbf{R}^2 = \mathbf{Cl}, \mathbf{R}^3 = 4 - \mathbf{Cl} - \mathbf{C}_6 \mathbf{H}_4$)	2f	69	6f	88
7	1g ($R^1 = Cl, R^2 = H, R^3 = 4-Me-C_6H_4$)	2g	76	6g	85
8	1h ($\mathbf{R}^1 = \mathbf{Cl}, \mathbf{R}^2 = \mathbf{H}, \mathbf{R}^3 = 4 - \mathbf{Cl} - \mathbf{C}_6 \mathbf{H}_4$)	2h	82	6ĥ	96
9	1i $(R^1 = MeO, R^2 = H, R^3 = Ph)$	2i	73	6i	95

Table. Preparation of Quinazolines 6

temperature, the desired products were obtained in slightly lower yields than those in DMF.

A possible pathway for the production of quinazolines **6** is also shown in *Scheme 1*. Trapping of the intermediate **5** by adding electrophiles such as MeI, Me₃SiCl, and BzCl to the reaction mixtures after confirmation of the disappearance of starting materials **1**, it was attempted to introduce a substituent at the 2-position of quinazolines. Unfortunately, however, all attempts failed; no desired products were obtained at all. Thus, we considered that deprotonation of **2** by **5** occurs to afford **6** and to regenerate **3**. When **2c** was treated with 0.1 equiv. of NaH in DMF at 0° , the reaction was complete in *ca*. 20 min to give the corresponding desired quinazoline **6c** in 75% yield. This result may support our consideration.

To investigate the utility of the present method, it was applied to the synthesis of 4arylpyrido[3,4-d]pyrimidines **9** using N-{[4-aryl(azido)methyl]pyridin-3-yl}formamide **7** as precursors, which could be easily prepared from known (4-aminopyridin-3yl)arylmethanones [8][9] by the same sequence as mentioned above for the preparation of azido formamides **1** from 2-aminophenyl ketones. After transformation of compounds **7** to the corresponding isocyanides **8**, these were subjected to the treatment with NaH under the same conditions as described for the preparation of quinazolines **6**. Moderate-to-fair yields of the desired products **9** were obtained by a similar workup and the subsequent purification as described for the isolation of **6**.

In conclusion, we have developed a novel method for the preparation of quinazolines, which can be conducted under mild conditions. The easiness of experimental operations and the ready availability of the starting materials make the present method attractive. We are currently exploring the possibility of applying this methodology to related heterocyclic systems to expand its potential scope.

Experimental Part

General. All org. solvents used in this study were dried over appropriate drying agents and distilled prior to use. TLC: Merck silica gel 60 PF₂₅₄. Column chromatography (CC): Wako Gel C-200E. M.p.: Laboratory Devices MEL-TEMP II melting-point apparatus; uncorrected. IR Spectra: PerkinElmer Spectrum65 FT-IR spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H-NMR Spectra: JEOL ECP500 FT NMR spectrometer or JEOL LA400 FT NMR spectrometer (at 500 or 400 MHz, resp.); δ in ppm rel. to Me₄Si as internal standard, J in Hz. ¹³C-NMR Spectra: JEOL ECP500 FT NMR spectrometer, at 125 MHz, in CDCl₃; δ in ppm rel. to Me₄Si as internal standard. HR-MS (DART, pos.): Thermo Scientific Exactive spectrometer; in m/z.

2-(Aminophenyl)(4-chlorophenyl)methanone [10], (2-amino-5-chlorophenyl)(4-methylphenyl)methanone [11], (2-amino-5-methoxyphenyl)phenylmethanone [12], N-[2-ethanoylphenyl]formamide [13], N-(2-benzoylphenyl)formamide [14], N-[3-chloro-6-(chloromethyl)phenyl]formamide [7], N-[2-(azido*methyl)phenyl]formamide* (1a) [6], N-(4-benzoylpyridin-3-yl)formamide [8], and N-[4-(4-chlorobenzoyl)pyridin-3-yl]formamide [9] were prepared according to the reported procedures. All other chemicals used in this study were commercially available.

Other (2-Aminophenyl)arylmethanones were prepared from appropriate 2-aminobenzonitriles and arylmagnesium bromide as reported for the preparation of (2-aminophenyl)(4-chlorophenyl)methanone [10].

(2-Amino-4-chlorophenyl)(4-chlorophenyl)methanone. Yield: 64%. Yellow solid. M.p. 116-118°
(hexane/CHCl₃). IR (KBr): 3450, 3338, 1629, 1611. ¹H-NMR (500 MHz, CDCl₃): 6.17 (br. s, 2 H); 6.58
(dd, J = 8.4, 2.3, 1 H); 6.75 (d, J = 2.3, 1 H); 7.33 (d, J = 8.4, 1 H); 7.44 (d, J = 8.4, 2 H); 7.55 (d, J = 8.4, 2 H). Anal. calc. for C₁₃H₉Cl₂NO (266.12): C 58.67, H 3.41, N 5.26; found: C 58.57, H 3.48, N 5.14. N-(2-Acylphenyl)formamides were prepared by N-formylation of the respective 2-aminophenyl

ketones with HCO₂H as described in [14].

N-[5-Chloro-2-(4-chlorobenzoyl)phenyl]formamide. Yield: 98%. Yellow solid. M.p. $95-97^{\circ}$ (hexane/CHCl₃). IR (KBr): 3307, 1704, 1640. ¹H-NMR (500 MHz, CDCl₃): 7.12 (d, J = 8.4, 1 H); 7.49 (d, J = 8.4, 3 H); 7.63 (d, J = 8.4, 2 H); 8.50 (s, 1 H); 8.79 (s, 1 H); 10.77 (br. s, 1 H). Anal. calc. for C₁₄H₉Cl₂NO₂ (294.13): C 57.17, H 3.08, N 4.76; found: C 57.09, H 3.35, N 4.65.

N-[4-Chloro-2-(4-methylbenzoyl)phenyl]formamide. Yield: 89%. Pale-yellow solid. M.p. $95-96^{\circ}$ (hexane/CH₂Cl₂). IR (KBr): 3318, 1702, 1642. ¹H-NMR (500 MHz, CDCl₃): 2.47 (*s*, 3 H); 7.32 (*d*, *J* = 7.8, 2 H); 7.52 – 7.54 (*m*, 2 H); 7.63 (*d*, *J* = 7.8, 2 H); 8.42 – 10.04 (*m*, 3 H). Anal. calc. for C₁₅H₁₂ClNO₂ (273.71): C 65.82, H 4.42, N 5.12; found: C 65.79, H 4.48, N 5.03.

N-[4-Chloro-2-(4-chlorobenzoyl)phenyl]formamide. Yield: 86%. Yellow solid. M.p. $89-91^{\circ}$ (hexane/Et₂O). IR (KBr): 3367, 1711, 1637. ¹H-NMR (500 MHz, CDCl₃): 7.49-7.52 (*m*, 3 H); 7.55 (*dd*, *J* = 9.2, 2.3, 1 H); 7.67 (*d*, *J* = 8.4, 2 H); 8.47 (*d*, *J* = 2.3, 1 H); 8.64 (*d*, *J* = 9.2, 1 H); 10.43 (*s*, 1 H). Anal. calc. for C₁₄H₉Cl₂NO₂ (294.13): C 57.17, H 3.08, N 4.76; found: C 57.15, H 3.24, N 4.76.

N-(2-Benzoyl-4-methoxyphenyl)formamide. Yield: 90%. Yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.22. IR (neat): 3323, 1695, 1645. ¹H-NMR (500 MHz, CDCl₃): 3.76, 3.77 (2s, combined 3 H); 7.06–10.26 (m, 10 H). Anal. calc. for C₁₅H₁₃NO₃ (255.27): C 70.58, H 5.13, N 5.49; found: C 70.52, H 5.13, N 5.30.

N-[2-(Hydroxyalkyl)phenyl]formamides and N-[4-[Aryl(hydroxy)methyl]pyridin-3-yl]formamides were prepared by the NaBH₄ reduction of the respective keto formamides in MeOH at r.t.

N- l^2 -(1-Hydroxyethyl)phenyl]formamide. Yield: 76%. Pale-yellow oil. R_f (AcOEt/hexane 1:2) 0.11. The ¹H-NMR data were identical to those reported in [15].

N-{2-[Hydroxy(phenyl)methyl]phenyl]formamide. Yield: 68%. White solid. M.p. 120–121° (hexane/THF) ([15]: 121–122°). IR (KBr): 3357, 1688. ¹H-NMR (500 MHz, CDCl₃): 2.38 (*s*, 1 H); 5.82, 5.92 (2*s*, combined 1 H); 7.05–8.79 (*m*, 11 H).

 $N-{2-[(4-Chlorophenyl)(hydroxy)methyl]phenyl]formamide. Yield: 82%. Colorless amorphous. <math>R_{f}$ (AcOEt/hexane 1:2) 0.19, IR (neat): 3319, 1675. ¹H-NMR (500 MHz, CDCl₃): 2.95, 3.01 (2*s*, combined 1 H); 5.93 (*s*, 1 H); 7.05 – 8.58 (*m*, 10 H). Anal. calc. for $C_{14}H_{12}CINO_{2}$ (261.70): C 64.25, H 4.62, N 5.35; found: C 64.04, H 4.69, N 5.08.

N-{5-Chloro-2-[(4-chlorophenyl)(hydroxy)methyl]phenyl]formamide. Yield: 92%. Colorless amorphous. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.23. IR (neat): 3315, 1682. ¹H-NMR (500 MHz, CDCl₃): 2.90, 2.99 (2d, J = 3.1, each, combined 1 H); 5.90 (d, J = 3.1, 1 H); 6.97-8.65 (m, 9 H). Anal. calc. for C₁₄H₁₁Cl₂NO₂ (296.15): C 56.78, H 3.74, N 4.73; found: C 56.73, H 3.81, N 4.80.

N-*[4-Chloro-2-[(hydroxy)(4-methylphenyl)methyl]phenyl]formamide.* Yield: 85%. Colorless viscous oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.26. IR (neat): 3316, 1681. ¹H-NMR (500 MHz, CDCl₃): 2.35 (*s*, 3 H); 3.11, 3.20 (2*d*, *J* = 2.9 and 3.4, resp., combined 1 H); 5.83, 5.85 (2*d*, *J* = 2.9 and 3.4, resp., combined 1 H); 7.00-8.68 (*m*, 9 H). Anal. calc. for C₁₅H₁₄ClNO₂ (275.73): C 65.34, H 5.12, N 5.08; found: C 65.34, H 5.14, N 5.04.

N-{4-Chloro-2-[(4-chlorophenyl)(hydroxy)methyl]phenyl}formamide. Yield: 77%. White solid. M.p. 117–118° (hexane/Et₂O). IR (KBr): 3318, 1680. ¹H-NMR (500 MHz, CDCl₃): 3.89, 3.99 (2*d*, J = 3.1 each, combined 1 H); 5.82 (*s*, 1 H); 7.04–8.72 (*m*, 9 H). Anal. calc. for C₁₄H₁₁Cl₂NO₂ (296.15): C 56.78, H 3.74, N 4.73; found: C 56.53, H 3.99, N 4.51.

 $N-{2-[Hydroxy(phenyl)methyl]-4-methoxyphenyl]formamide. Yield: 78\%. Colorless viscous oil. <math>R_{f}$ (AcOEt/hexane 2:3) 0.21. IR (neat): 3331, 1674, 1605. ¹H-NMR (500 MHz, CDCl₃): 3.34, 3.53 (2d,

J = 3.1 each, combined 1 H); 3.73, 3.76 (2*s*, combined 3 H); 5.857, 5.862 (2*s*, combined 1 H), 6.66-8.33 (*m*, 10 H). Anal. calc. for C₁₅H₁₅NO₃ (257.28): C 70.02, H 5.88, N 5.44; found: C 69.84, H 5.96, N 5.31.

N-*{4-[Hydroxy(phenyl)methyl]pyridin-3-yl]formamide.* Yield: 65%. White solid. M.p. $143-145^{\circ}$ (hexane/THF). IR (KBr): 3293, 1678. ¹H-NMR (500 MHz, CDCl₃): 3.21, 3.60 (2 br. *s.* combined 1 H); 5.93, 5.94 (2*s*, combined 1 H); 7.01-9.37 (*m*, 10 H). Anal. calc. for $C_{13}H_{12}N_2O_2$ (228.25): C 68.41, H 5.30, N 12.27; found: C 68.15, H 5.40, N 12.20.

 $N-\{4-[(4-Chlorophenyl)(hydroxy)methyl]pyridin-3-yl]formamide.$ Yield: 65%. White solid. M.p. 138–140° (hexane/THF). IR (KBr): 3289, 3249, 1688, 1606. ¹H-NMR (500 MHz, (D₆)DMSO): 5.94, 6.03 (2*s*, combined 1 H); 6.43 (br., 1 H); 7.28–9.80 (*m*, 9 H). Anal. calc. for $C_{13}H_{11}ClN_2O_2$ (262.69): C 59.44, H 4.22, N 10.66; found: C 59.27, H 4.27, N 10.50.

N-{2-[Azido(phenyl)methyl]phenyl}formamide (**1c**) (*Representative Procedure*). To a stirred soln. of *N*-{2-[hydroxy(phenyl)methyl]phenyl}formamide (2.0 g, 8.6 mmol) in THF (11 ml) at -40° was added a soln. of SOCl₂ (1.1 g, 9.0 mmol) in THF (5 ml) dropwise. After stirring for 30 min at the same temp., the temp. was raised to -20° , and stirring was continued for 1.5 h. Na₂CO₃ (0.3 g) was added, and the mixture was filtered under reduced pressure. The filtrate was concentrated by evaporation to give a residue (1.9 g), which was used for the next step without any purification. The residue was dissolved in DMF, and NaN₃ (0.59 g, 9.0 mmol) was added under stirring, which was continued for 7 d at r.t. H₂O (30 ml) was added, and the mixture was extracted with AcOEt (3 × 20 ml). The combined extracts were washed with H₂O (3 × 20 ml) and brine (20 ml), and dried (Na₂SO₄) and concentrated by evaporation. The residue was purified by CC (SiO₂) to give **1c** (1.5 g, 70%). White solid. M.p. 103–104° (hexane/CH₂Cl₂). IR (KBr): 3314, 2101, 1687. ¹H-NMR (500 MHz, CDCl₃): 5.82, 5.92 (2s, combined 1 H); 7.05–8.80 (*m*, 11 H). Anal. calc. for C₁₄H₁₂N₄O (252.27): C 66.65, H 4.79, N 22.21; found: C 66.65, H 4.77, N 22.15.

N-[2-(1-Azidoethyl)phenyl]formamide (**1b**). Yield: 71%. Yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.47. IR (neat): 3287, 2104, 1693, 1604. ¹H-NMR (500 MHz, CDCl₃): 1.64 (d, J = 6.1, 3 H); 4.64–4.72 (m, 1 H); 7.18–8.58 (m, 6 H). Anal. calc. for C₉H₁₀N₄O (190.20): C 56.83, H 5.30, N 29.46; found: C 56.62, H 5.30, N 29.20.

 $N-\{2-[Azido(4-chlorophenyl)methyl]phenyl]formamide (1d).$ Yield: 60%. White solid. M.p. 100–102° (hexane/CH₂Cl₂). IR (KBr): 3224, 2106, 1656. ¹H-NMR (500 MHz, CDCl₃): 5.79 (*s*, 1 H); 7.05–8.38 (*m*, 10 H). Anal. calc. for $C_{14}H_{11}ClN_4O$ (286.72): C 58.65, H 3.87, N 19.54; found: C 58.42, H 3.90, N 19.40.

N-[2-(*Azidomethyl*)-5-chlorophenyl]formamide (**1e**) was prepared from *N*-[3-chloro-6-(chloromethyl)phenyl]formamide [7] in 87% yield as described for the preparation of N-[2-(*azidomethyl*)phenyl]formamide (**1a**) from *N*-[2-(chloromethyl)phenyl]formamide and NaN₃ [6]. Yellow oil. R_f (AcOEt/hexane 1:5) 0.57. IR (neat): 3288, 2106, 1693. ¹H-NMR (500 MHz, CDCl₃): 4.34, 4.36 (2*s*, combined 2 H); 7.18 – 8.56 (*m*, 5 H). Anal. calc. for C₈H₇ClN₄O (210.62): C 45.62, H 3.35, N 26.60; found: C 45.47, H 3.38, N 26.48.

N-(2-[Azido(4-chlorophenyl)methyl]-5-chlorophenyl]formamide (1f). Yield: 64%. Yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.25. IR (neat): 3286, 2102, 1693. ¹H-NMR (500 MHz, CDCl₃): 5.76, 5.77 (2*s*, combined 1 H); 7.18-8.39 (*m*, 9 H). Anal. calc. for C₁₄H₁₀Cl₂N₄O (321.16): C 52.36, H 3.14, N 17.45; found: C 52.16, H 3.40, N 17.40.

N- $(2-[Azido(4-methylphenyl)methyl]-4-chlorophenyl]formamide (1g). Yield: 67%. Colorless oil. <math>R_f$ (AcOEt/hexane 1:1) 0.30. IR (neat): 3292, 2103, 1693. ¹H-NMR (500 MHz, CDCl₃): 2.36 (*s*, 3 H); 5.70 (*s*, 1 H); 7.05 – 8.34 (*m*, 9 H). Anal. calc. for C₁₅H₁₃ClN₄O (300.74): C 59.91, H 4.36, N 18.63; found: C 59.86, H 4.60, N 18.37.

 $N-\{2-[Azido(4-chlorophenyl)methyl]-4-chlorophenyl]formamide$ (**1h**). Yield: 83%. Pale-yellow solid. M.p. 98–100° (hexane/CHCl₃). IR (KBr): 3275, 2104, 1694. ¹H-NMR (500 MHz, CDCl₃): 5.75, 5.78 (2*s*, combined 1 H); 7.12–8.31 (*m*, 9 H). Anal. calc. for $C_{14}H_{10}Cl_2N_4O$ (321.16): C 52.36, H 3.14, N 17.45; found: C 52.35, H 3.28, N 17.40.

N-{2-[Azido(phenyl)methyl]-4-methoxyphenyl]formamide (**1i**). Yield: 70%. Yellow oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.21. IR (KBr): 3257, 2101, 1689. ¹H-NMR (500 MHz, CDCl₃): 3.81, 3.83 (2*s*, combined, 3 H); 5.78, 5.80 (2*s*, combined 1 H); 6.86 – 8.17 (*m*, 10 H). Anal. calc. for C₁₅H₁₄N₄O₂ (282.30): C 63.82, H 5.00, N 19.85; found: C 63.93, H 5.04, N 20.13.

N-{4-[Azido(phenyl)methyl]pyridin-3-yl]formamide (**7a**). Yield: 60%. Yellow oil. $R_{\rm f}$ (THF/hexane 1:1) 0.35. IR (neat): 3239, 2103, 1695. ¹H-NMR (500 MHz, CDCl₃): 5.87 (*s*, 1 H); 7.23 – 9.02 (*m*, 10 H). Anal. calc. for C₁₃H₁₁N₅O (253.26): C 61.65, H 4.38, N 27.65; found: C 61.61, H 4.40, N 27.60.

N-{4-[Azido(4-chlorophenyl)methyl]pyridin-3-yl]formamide (**7b**). Yield: 62%. Yellow oil. $R_{\rm f}$ (THF/ hexane 1:1) 0.24. IR (neat): 3239, 2105, 1695. ¹H-NMR (500 MHz, CDCl₃): 5.86, 5.88 (2*s*, combined 1 H); 7.18 – 8.98 (*m*, 9 H). Anal. calc. for C₁₃H₁₀ClN₅O (287.70): C 54.27, H 3.50, N 24.34; found: C 54.10, H 3.53, N 24.28.

Isocyanobenzenes **2** were prepared by dehydration of **1** with POCl₃ as described in [16].

1-(Azidomethy)l-2-isocyanobenzene (**2a**). Green oil. R_f (CH₂Cl₂/hexane 1:1) 0.46. ¹H-NMR Data: identical to those reported in [6].

1-(1-Azidoethyl)-2-isocyanobenzene (**2b**). Pale-green oil. $R_{\rm f}$ (CH₂Cl₂/hexane 1:5) 0.50. IR (neat): 2121, 2101. ¹H-NMR (500 MHz, CDCl₃): 1.57 (*d*, *J* = 6.9, 3 H); 5.09 (*q*, *J* = 6.9, 1 H); 7.35 (*td*, *J* = 7.6, 1.5, 1 H); 7.41 (*d*, *J* = 7.6, 1 H); 7.46 (*td*, *J* = 7.6, 1.5, 1 H), 7.52 (*d*, *J* = 7.6, 1 H). HR-MS: 173.0806 ([*M* + H]⁺, C₉H₉M⁺₄; calc. 173.0827).

 $\begin{array}{l} 1-[Azido(phenyl)methyl]-2-isocyanobenzene (2c). \ensuremath{\mbox{Pale-green}} oil. R_{\rm f} ({\rm CH_2Cl_2/hexane}\ 1:5) \ 0.20. \ensuremath{\mbox{IR}} (neat): 2119, 2102. \ensuremath{^1\mbox{H-NMR}} (500 \ensuremath{\,{\rm MHz}}, {\rm CDCl_3}): 6.09 \ensuremath{\left(s, 1\ {\rm H}\right)}; 7.32-7.35 \ensuremath{\left(m, 3\ {\rm H}\right)}; 7.36-7.40 \ensuremath{\left(m, 4\ {\rm H}\right)}; 7.47 \ensuremath{\left(td, J=7.6, 1.5, 1\ {\rm H}\right)}; 7.62 \ensuremath{\left(d, J=7.6, 1\ {\rm H}\right)}. \ensuremath{\,{\rm HR-MS}}: 235.0982 \ensuremath{\left([M+{\rm H}]^+, {\rm C}_{14}{\rm H}_{11}{\rm N}_4^+; {\rm calc.} 235.0983). \end{array}$

1-[Azido(4-chlorophenyl)methyl]-2-isocyanobenzene (**2d**). Pale-green oil. $R_{\rm f}$ (CH₂Cl₂/hexane 1:3) 0.47. IR (neat): 2127, 2103. ¹H-NMR (500 MHz, CDCl₃): 6.07 (*s*, 1 H); 7.26 – 7.29 (*m*, 2 H); 7.34 – 7.40 (*m*, 4 H); 7.48 (*td*, J = 7.6, 1.5, 1 H); 7.59 (*d*, J = 7.6, 1 H). HR-MS: 269.0565 ([M + H]⁺, $C_{14}H_{10}ClN_4^+$; calc. 269.0594).

1-(Azidomethy)l-4-chloro-2-isocyanobenzene (**2e**). Pale-green liquid. $R_{\rm f}$ (CH₂Cl₂/hexane 1:3) 0.18. IR (neat): 2119. ¹H-NMR (500 MHz, CDCl₃): 4.55 (*s*, 2 H); 7.37–7.38 (*m*, 2 H); 7.48 (*s*, 1 H). HR-MS: 193.0278 ([M + H]⁺, C₈H₆ClN₄⁺; calc. 193.0281).

1-[Azido(4-chlorophenyl)methyl]-4-chloro-2-isocyanobenzene (**2f**). Green oil. $R_{\rm f}$ (CH₂Cl₂/hexane 1:5) 0.30. IR (neat): 2104. ¹H-NMR (500 MHz, CDCl₃): 6.00 (s, 1 H); 7.25 (d, J = 8.4, 2 H); 7.36 (d, J = 8.4, 2 H); 7.39 (d, J = 2.3, 1 H); 7.46 (dd, J = 8.4, 2.3, 1 H); 7.54 (d, J = 8.4, 1 H). HR-MS: 303.0203 ([M + H]⁺, C₁₄H₉Cl₂N₄⁺; calc. 303.0204).

1-[Azido(4-methylphenyl)methyl]-5-chloro-2-isocyanobenzene (**2g**). Green oil. R_f (CH₂Cl₂/hexane 1:3) 0.26. IR (neat): 2128, 2103. ¹H-NMR (500 MHz, CDCl₃): 2.35 (s, 3 H); 5.98 (s, 1 H); 7.21 (br. s, 4 H); 7.28 – 7.32 (m, 2 H); 7.65 (br. s, 1 H). HR-MS: 283.0729 ([M + H]⁺, C₁₅H₁₂ClN₄⁺; cale. 283.0750).

1-[Azido(4-chlorophenyl)methyl]-5-chloro-2-isocyanobenzene (**2h**). Light-blue solid. M.p. 85–86° (hexane/Et₂O). IR (KBr): 2106. ¹H-NMR (400 MHz, CDCl₃): 5.99 (*s*, 1 H); 7.28 (*d*, *J* = 8.3, 2 H); 7.29 – 7.34 (*m*, 2 H); 7.38 (*d*, *J* = 8.3, 2 H); 7.62 (*d*, *J* = 2.0, 1 H). HR-MS: 303.0197 ([*M* + H]⁺, C₁₄H₉Cl₂N₄⁺; calc. 303.0204).

1-[Azido(phenyl)methyl]-5-methoxy-2-isocyanobenzene (**2i**). Green oil. $R_{\rm f}$ (CH₂Cl₂/hexane 1:2) 0.57. IR (neat): 2103, 1607. ¹H-NMR (500 MHz, CDCl₃): 3.84 (*s*, 3 H); 6.04 (*s*, 1 H); 6.82 (*dd*, J = 9.2, 2.3, 1 H); 7.11 (*d*, J = 2.3, 1 H); 7.29-7.39 (*m*, 6 H). HR-MS: 265.1088 ([M+H]⁺, C₁₅H₁₃N₄O⁺; calc. 265.1089).

4-[Azido(phenyl)methyl]-3-isocyanopyridine (8a). Brown oil. $R_{\rm f}$ (THF/hexane 1:2) 0.50. IR (neat): 2119, 2106. ¹H-NMR (500 MHz, CDCl₃): 6.00 (s, 1 H); 7.32–7.43 (m, 5 H); 7.66 (d, J = 5.3, 1 H); 8.62 (s, 1 H); 8.69 (d, J = 5.3, 1 H). HR-MS: 236.0928 ([M + H]⁺, $C_{13}H_{10}ON_{5}^{+}$; calc. 236.0936).

4-[Azido(4-chlorophenyl)methyl]-3-isocyanopyridine (**8b**). Green oil. $R_{\rm f}$ (THF/hexane 1:4) 0.52. IR (neat): 2107. ¹H-NMR (500 MHz, CDCl₃): 5.98 (s, 1 H); 7.27 (d, J = 8.4, 2 H); 7.39 (d, J = 8.4, 2 H); 7.69 (d, J = 5.3, 1 H); 8.65 (s, 1 H); 8.70 (d, J = 5.3, 1 H). HR-MS: 270.0550 ([M + H]⁺, $C_{13}H_9ClN_5^+$; calc. 270.0546).

Quinazoline (**6a**) (*Representative Procedure*). To a stirred suspension of NaH (60% in mineral oil; 35 mg, 0.88 mmol) in DMF (2 ml) at 0° was added a soln. of **2a** (0.14 g, 0.88 mmol) in DMF (1.5 ml) dropwise. After stirring for 10 min at the same temp., H₂O (15 ml) was added. The mixture was extracted with AcOEt (3×10 ml), and the combined extracts were washed with H₂O (3×10 ml) and brine (10 ml), and dried (Na₂SO₄) and concentrated by evaporation. The residue was purified by CC (SiO₂) to give **6a** (79 mg, 69%). White solid. M.p. 45–47° (hexane/CH₂Cl₂) ([17]: 48°). Identified by a direct comparison with a sample purchased from *Tokyo Chemical Industry Co., Ltd.*

4-Methylquinazoline (**6b**). White solid. M.p. $34-36^{\circ}$ (hexane/CH₂Cl₂) ([18]: $34-35^{\circ}$). ¹H-NMR Data: identical to those reported in [18].

4-Phenylquinazoline (6c). White solid. M.p. $99-101^{\circ}$ (hexane/CH₂Cl₂) ([18]: $100-101^{\circ}$). ¹H- and ¹³C-NMR data: identical to those reported in [19].

4-(4-Chlorophenyl)quinazoline (6d). White solid. M.p. $123-125^{\circ}$ (hexane/CH₂Cl₂) ([17]: 122°). ¹H-NMR Data: identical to those reported in [17].

7-Chloroquinazoline (6e). White solid. M.p. $92-94^{\circ}$ (hexane/CH₂Cl₂) ([20]: $93-94^{\circ}$). ¹H-NMR Data: identical to those reported in [21].

7-*Chloro-4-(4-chlorophenyl)quinazoline* (**6f**). White solid. M.p. $160-162^{\circ}$ (hexane/Et₂O). IR (KBr): 3065, 1604, 1557, 1475. ¹H-NMR (500 MHz, CDCl₃): 7.57–7.59 (*m*, 3 H); 7.73 (*d*, *J* = 8.4, 2 H); 8.03 (*d*, *J* = 9.2, 1 H); 8.12 (*d*, *J* = 2.3, 1 H); 9.36 (*s*, 1 H). ¹³C-NMR: 121.35; 128.09; 128.11; 129.10 (2 overlapped Cs); 131.23; 135.08; 136.81; 140.21; 151.77; 155.55; 167.11. HR-MS: 275.0123 ([*M* + H]⁺, C₁₄H₉Cl₂N₂⁺; calc. 275.0143). Anal. calc. for C₁₄H₈Cl₂N₂ (275.13): C 61.12, H 2.93, N 10.18; found: C 60.85, H 2.81, N 10.08.

6-*Chloro-4-(4-methylphenyl)quinazoline* (**6g**). White solid. M.p. 163–164° (hexane/CH₂Cl₂). IR (KBr): 3065, 1556, 1486. ¹H-NMR (500 MHz, CDCl₃): 2.49 (*s*, 3 H); 7.41 (*d*, *J* = 7.6, 2 H); 7.68 (*d*, *J* = 7.6, 2 H); 7.84 (*dd*, *J* = 9.2, 2.3, 1 H); 8.06 (*d*, *J* = 9.2, 1 H); 8.13 (*d*, *J* = 2.3, 1 H); 9.36 (*s*, 1 H). ¹³C-NMR: 21.46; 123.72; 125.91; 129.55; 129.85; 130.62; 133.33; 133.71; 134.55; 140.74; 149.61; 154.83; 167.64. HR-MS: 255.0688 ([M + H]⁺, C₁₅H₁₂ClN₂⁺; calc. 255.0689). Anal. calc. for C₁₅H₁₁ClN₂ (254.71): C 70.73, H 4.35, N 11.00; found: C 70.57, H 4.48, N 10.90.

6-*Chloro-4*-(4-*chlorophenyl*)*quinazoline* (**6h**). Pale-yellow solid. M.p. 125 – 127° (hexane/Et₂O). IR (KBr): 3037, 1559, 1486. ¹H-NMR (500 MHz, CDCl₃): 7.59 (*d*, *J* = 8.4, 2 H); 7.73 (*d*, *J* = 8.4, 2 H); 7.86 (*dd*, *J* = 9.2, 2.3, 1 H); 8.05 (*d*, *J* = 2.3, 1 H); 8.08 (*d*, *J* = 9.2, 1 H); 9.37 (*s*, 1 H). ¹³C-NMR: 123.46; 125.35; 129.17; 130.81; 131.17; 133.75; 134.84; 134.90; 136.83; 149.64; 154.75; 166.31. HR-MS: 275.0128 ([*M* + H]⁺, C₁₄H₉Cl₂N⁺₂; calc. 275.0143). Anal. calc. for C₁₄H₈Cl₂N₂ (275.13): C 61.12, H 2.93, N 10.18; found: C 60.96, H 3.04, N 9.78.

6-*Methoxy-4-phenylquinazoline* (**6i**). Yellow solid. M.p. $101-103^{\circ}$ (hexane/Et₂O). IR (KBr): 3062, 1619, 1537, 1504, 1234. ¹H-NMR (500 MHz, CDCl₃): 3.85 (*s*, 3 H); 7.37 (*d*, J = 2.3, 1 H); 7.55–7.61 (*m*, 4 H); 7.79–7.81 (*m*, 2 H); 8.03 (*d*, J = 9.2, 1 H); 9.27 (*s*, 1 H). ¹³C-NMR: 55.62; 104.10; 124.03; 125.47; 128.70; 129.55; 129.85; 130.37; 137.45; 147.32; 152.88; 158.39; 166.56. HR-MS: 237.1019 ([M +H]⁺, C₁₅H₁₃N₂O⁺; calc. 237.1028). Anal. calc. for C₁₅H₁₂N₂O (236.27): C 76.25, H 5.12, N 11.86; found: C 76.04, H 5.15, N 11.84.

4-Phenylpyrido[*3*,*4*-d]*pyrimidine* (**9a**). Yellow solid. M.p. 87–88° (hexane/CH₂Cl₂). IR (KBr): 3030, 1557, 1542, 1384. ¹H-NMR (500 MHz, CDCl₃): 7.61–7.64 (*m*, 3 H); 7.83–7.85 (*m*, 2 H); 7.96 (*d*, *J* = 5.4, 1 H); 8.77 (*d*, *J* = 5.4, 1 H); 9.54 (*s*, 1 H); 9.61 (*s*, 1 H); ¹³C-NMR: 118.12; 125.51; 128.96; 129.92; 130.87; 135.78; 145.29; 145.40; 154.46; 156.00; 168.24. HR-MS: 208.0864 ([M + H]⁺, C₁₃H₁₀N₃⁺; calc. 208.0874). Anal. calc. for C₁₃H₉N₃ (207.23): C 75.35, H 4.38, N 20.28; found: C 75.10, H 4.58, N 20.26.

4-(4-Chlorophenyl)pyrido[3,4-d]pyrimidine (**9b**). Yellow solid. M.p. 141–142° (hexane/CH₂Cl₂). IR (KBr): 3061, 1554, 1536, 1381. ¹H-NMR (500 MHz, CDCl₃): 7.61 (d, J = 8.4, 2 H); 7.80 (d, J = 8.4, 2 H); 7.91 (d, J = 5.4, 1 H); 8.78 (d, J = 5.4, 1 H); 9.52 (s, 1 H); 9.61 (s, 1 H). ¹³C-NMR: 117.67; 125.31; 129.08; 129.32; 131.24; 134.18; 137.44; 145.45; 154.59; 155.96; 166.97. HR-MS: 242.0481 ([M + H]⁺, C₁₃H₉ClN₃; calc. 242.0485). Anal. calc. for C₁₃H₈ClN₃ (241.68): C 64.61, H 3.34, N 17.39; found: C 64.40, H 3.18, N 17.27.

This work was supported in part by JSPS KAKENHI Grant No. 26410051. Mrs. *Miyuki Tanmatsu* of our university is acknowledged for recording mass spectra and performing combustion analyses.

REFERENCES

 K.-F. Chen, K.-C. Pao, J.-C. Su, Y.-C. Chou, C.-Y. Liu, H.-J. Chen, J.-W. Huang, I. Kim, C.-W. Shiau, Bioorg. Med. Chem. 2012, 20, 6144; K. Juvale, M. Wiese, Bioorg. Med. Chem. Lett. 2012, 22, 6766; M. H. P. Verheij, A. J. Thompson, J. E. Van Muijlwijk-Koezen, S. C. R. Lummis, R. Leurs, I. J. P. de Esch, J. Med. Chem. 2012, 55, 8603; S. Lü, W. Zheng, L. Ji, Q. Luo, X. Hao, X. Li, F. Wang, Eur. J. Med. Chem. 2013, 61, 84; S. Mowafy, N. A. Farag, K. A. M. Abouzid, Eur. J. Med. Chem. 2013, 61, 132; J.-H. He, H.-Y. Liu, Z. Li, J.-H. Tan, T.-M. Ou, S.-L. Huang, L.-K. An, D. Li, L.-Q. Gu, Z.-S. Huang, Eur. J. Med. Chem. 2013, 63, 1; S. Li, X. Wang, Y. He, M. Zhao, Y. Chen, J. Xu, M. Fang, J. Chang, H. Hing, C. Qi, Eur. J. Med. Chem. 2013, 67, 293; M. T. Conconi, G. Marzaro, L. Urbani, I. Zanusso, R. D. Liddo, I. Castagliuolo, P. Brun, F. Tonus, A. Ferrarese, A. Guiotto, A. Chilin, Eur. J. Med. Chem. 2013, 67, 373; L. Xu, W. A. Russu, Bioorg. Med. Chem. 2013, 21, 540; T.-A. N. Pham, Z. Yang, Y. Fang, J. Luo, J. Lee, H. Park, Bioorg. Med. Chem. 2013, 21, 1349; A. I. Sánchez, V. Martínez-Barrasa, C. Burgos, J. J. Vaquero, J. Alvarez-Builla, E. Terricabras, V. Segarra, Bioorg. Med. Chem. 2013, 21, 2370; F. Zhao, Z. Lin, F. Wang, W. Zhao, X. Dong, Bioorg. Med. Chem. Lett. 2013, 23, 5385; X. Zhang, M. Su, Y. Chen, J. Li, W. Lu, Molecules 2013, 18, 6491.

- [2] S. Verbeeck, W. A. Herrebout, A. V. Gulevskaya, B. J. van der Veken, B. U. W. Maes, J. Org. Chem. 2010, 75, 5126.
- [3] Y. Yan, Y. Zhang, C. Feng, Z. Zha, Z. Wang, Angew. Chem., Int. Ed. 2012, 51, 8077.
- Z.-Y. Xing, Y. Fu, F. Ye, ARKIVOC 2012, (ix), 280; S. K. Panja, N. Dwivedi, S. Saha, Tetrahedron Lett. 2012, 53, 6167; J. Ju, R. Hua, J. Su, Tetrahedron 2012, 68, 9364; Y. Lv, Y. Li, T. Xiong, W. Pu, H. Zhang, K. Sun, Q. Liu, Q. Zhang, Chem. Commun. 2013, 49, 6439; X. Su, C. Chen, Y. Wang, J. Chen, Z. Lou, M. Li, Chem. Commun. 2013, 49, 6752.
- [5] J. B. Smail, B. D. Palmer, G. W. Rewcastle, W. A. Denny, D. J. McNamara, E. M. Dobrusin, A. J. Bridges, H. Zhou, H. D. H. Showalter, R. T. Winters, W. R. Leopold, D. W. Fry, J. M. Nelson, V. Slintak, W. L. Elliot, B. J. Roberts, P. W. Vincent, S. J. Patmore, *J. Med. Chem.* 1999, *42*, 1803; B. Lippa, G. S. Kauffman, J. Arcari, T. Kwan, J. Chen, W. Hungerford, S. Bhattacharya, X. Zhao, C. Williams, J. Xiao, L. Pustilnik, C. Su, J. D. Moyer, L. Ma, M. Campbell, S. Steyn, *Bioorg. Med. Chem. Lett.* 2007, *17*, 3081; S. J. Mantell, K. R. Gibson, S. A. Osborne, G. N. Maw, H. Rees, P. G. Dodd, B. Greener, G. W. Harbottle, W. A. Million, C. Poinsard, S. England, P. Carnell, A. M. Betts, R. Monhemius, R. L. Prime, *Bioorg. Med. Chem. Lett.* 2009, *19*, 2190; M. J. van Eis, J.-P. Evenou, P. Floersheim, C. Gaul, S. W. Cowan-Jacob, L. Monovich, G. Rummel, W. Schuler, W. Stark, A. Strauss, A. von Matt, E. Vangrevelinghe, J. Wagner, N. Soldermann, *Bioorg. Med. Chem. Lett.* 2011, *21*, 7367; C. D. Cox, I. T. Raheem, B. A. Flores, D. B. Whiteman, *US Pat. Appl. Publ.* 2011, 20110319409; *Chem. Abstr.* 2011, *156*, 92460; L. Wie, S. V. Malhotra, *MedChemComm* 2012, *3*, 1250.
- [6] G. Facchin, R. A. Michelin, M. Mozzon, S. Pugliese, P. Sgarbossa, A. Tassan, *Inorg. Chem. Commun.* 2002, 5, 915.
- [7] K. Kobayashi, D. Iitsuka, S. Fukamachi, H. Konishi, Tetrahedron 2009, 65, 7523.
- [8] K. Kobayashi, T. Kozuki, S. Fukamachi, H. Konishi, Helv. Chim. Acta 2010, 93, 2086.
- [9] K. Kobayashi, T. Kozuki, M. Konishi, T. Suzuki, M. Tanmatsu, H. Konishi, *Helv. Chim. Acta* 2011, 94, 1234.
- [10] K. Kobayashi, Y. Okamura, S. Fukamachi, H. Konishi, Tetrahedron 2010, 66, 7961.
- [11] M. Okabe, R.-C. Sun, Tetrahedron 1995, 51, 1861.
- [12] M. C. Carter, D. G. Alber, R. C. Baxter, S. K. Bithell, J. Budworth, A. Chubb, G. S. Cockerill, V. C. L. Dowdell, E. A. Henderson, S. J. Keegan, R. D. Kelsey, M. J. Lockyer, J. N. Stables, L. J. Wilson, K. L. Powell, J. Med. Chem. 2006, 49, 2311.
- [13] K. Kobayashi, S. Fujita, S. Fukamachi, H. Konishi, Synthesis 2009, 3378.
- [14] K. Kobayashi, K. Yoneda, K. Miyamoto, O. Morikawa, H. Konishi, Tetrahedron 2004, 60,11639.
- [15] I. Fleming, M. A. Loreto, I. H. M. Wallace, J. Chem. Soc., Perkin Trans. 1 1986, 349.
- [16] Y. Ito, K. Kobayashi, N. Seko, T. Saegusa, Bull. Chem. Soc. Jpn. 1984, 57, 73.
- [17] T. Higashino, Chem. Pharm. Bull. 1961, 9, 635.
- [18] B. C. Uff, B. L. Joshi, F. D. Popp, J. Chem. Soc., Perkin Trans. 1 1986, 2295.
- [19] C.-H. Yang, K. H. Fang, W.-L. Su, S.-P. Wang, S.-K. Su, I.-W. Sun, J. Organomet. Chem. 2006, 691, 2767.
- [20] W. L. F. Armarego, J. Chem. Soc. 1962, 561.
- [21] M. Akazome, J. Yamamoto, T. Kondo, Y. Watanabe, J. Organomet. Chem. 1995, 494, 229.

Received December 6, 2013